

Diagnostic Update for Practitioners: Case Studies. Bill Saxon, DVM, DACVIM, DACVECC, IDEXX Field Medical Specialist

IDEXX

Objectives:

- Through case presentations and review, choose the appropriate diagnostic tests for each patient
- Properly interpret hematology, chemistry, electrolyte, urinalysis and other routine initial tests for each case
- $_{\odot}$ Determine what other diagnostic testing is necessary for each case presentation
- $\,\circ\,$ Discuss treatment options and monitoring protocols

Getting the full picture in case management.

History and physical exam most important

 \circ Body condition score

o Muscle condition score

 $_{\odot}$ Blood pressure

 \circ Fundic exam

 \circ Rectal exam

Record BCS AND MCS on every pet on every exam

Muscle condition score is assessed by visualization and palpation of the spine, scapulae, skull, and wings of the lila. Muscle loss is typically first noted in the epaxial muscles on each side of the spine; muscle loss at other sites can be more variable. Muscle condition score is graded as normal, mild loss, moderate loss, or severe loss. Note that # animals can have significant muscle loss even if they are overweight (body condition score > 5/9). Conversely, animals can have a low body condition score (< 4/9) but have minimal muscle loss. Therefore, assessing both body condition score and muscle condition score or every animal at every visit is important. Palpation is especially important with mild muscle loss and in animals that are overweight. An example of each score is shown below.

Muscle Condition Score

Muscle condition score is assessed by visualization and paipation of the spine, scapulae, skull, and wings of the lila. Muscle loss is typically first noted in the epaxial muscles on each side of the spine; muscle loss at other sites can be more variable. Muscle condition score is graded as normal, mill loss, moderate loss, or severe loss. Note that animals can have significant muscle loss if they are overweight (body condition score > 5). Conversely, animals can have a low body condition score (< 4) but have minimal muscle loss. Therefore, assessing both body condition score and muscle loss is mild and in animals that are overweight. An example of each score is shown below.

IDEXX

History and physical exam most important

 \circ Body condition score

 $_{\odot}$ Muscle condition score

o Blood pressure

 \circ Fundic exam

 \circ Rectal exam

Hypertension update – new normal SBP <140mm Hg

CONSENSUS STATEMENT 🔂 Open Access 💿 🚯

ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats

Mark J. Acierno, Scott Brown, Amanda E. Coleman, Rosanne E. Jepson, Mark Papich, Rebecca L. Stepien, Harriet M. Syme

First published: 24 October 2018 | https://doi.org/10.1111/jvim.15331

Normotensive (minimal TOD risk)	SBP <140 mm Hg
Prehypertensive (low TOD risk)	SBP 140-159 mm Hg
Hypertensive (moderate TOD risk)	SBP 160-179 mm Hg
Severely hypertensive (high TOD risk)	SBP ≥180 mm Hg

7 © 2018 IDEXX Laboratories, Inc. All rights reserved.

Hypertension – real or 'white coat'?

Acclimate 5-10 minutes in designated quiet room

o Ventral or lateral recumbency with minimal restraint, owner present

Appropriate cuff width = 30-40% limb circumference

○ Limb or tail – base on conformation, tolerance, user preference

• Same nurse each time

Average 5-7 measurements if <20% variation, discard first

Fractious pet – don't bother, look for evidence of TOD – where?
 © 2018 IDEXX Laboratories, Inc. All rights reserved.

History and physical exam most important

 \circ Body condition score

 $_{\odot}$ Muscle condition score

 $_{\odot}$ Blood pressure

• Fundic exam

 \circ Rectal exam

The minimum data base and beyond...

- \circ Components
 - Minimal starting point
 - Complete blood count (CBC)
 - Complete biochemistry profile (now includes the IDEXX SDMA[™] Test)

 always includes electrolytes
 - Complete urinalysis (UA)
 - Additions to the MDB depending on signalment, geography, clinical presentation, and physical examination findings:

Total T ₄	SNAP® 4Dx® Plus	SNAP [®] FIV/FeLV Combo
NTproBNP	Imaging	Blood pressure
PCR	Fecal Antigen Testing	UP/C

The minimum data base and beyond...

- \circ Components
 - Minimal starting point
 - Complete blood count (CBC)
 - Complete biochemistry profile (now includes the IDEXX SDMA[™] Test)

 always includes electrolytes
 - Complete urinalysis (UA)
 - Additions to the MDB depending on signalment, geography, clinical presentation, and physical examination findings:

Tot	al T ₄ Test	SNAP®	4Dx [®] Plus Test	Bile /	Acid Test
Cardiope	t [®] proBNP Test	SNA	AP [®] fPL/cPL	(CRP
PCR	Blood Gas	PT/PTT	Resting Cortisol	LACTATE	SNAP [®] Lepto

Worth a look...

Reading between the lines to get most from lab results CBC Biochemical profile Complete urinalysis

RBC parameters: what's significant and what isn't

- Hemoglobin x 3 = PCV
- o Absolute reticulocyte count most accurate way to determine if anemia regenerative
 - Changes in RBC indices (↑ MCV, ↓ MCHC) in only 8-11% with regenerative anemia
- Reticulocytosis without anemia may indicate underlying disease
- Reticulocyte-hemoglobin early marker of iron deficiency RETIC-HGB
 - RBC indices are mean values slow to change when new cells produced

Is this patient truly anemic?

RBC	5.32	5.65 - 8.87 Μ/μL	L
Hematocrit	35.8	37.3 - 61.7 %	L
Hemoglobin	13.2	13.1 - 20.5 g/dL	
MCV	67.3	61.6 - 73.5 fL	
MCH	24.8	21.2 - 25.9 pg	
MCHC	36.9	32.0 - 37.9 g/dL	
RDW	15.0	13.6 - 21.7 %	
% Reticulocyte	0.4	%	
Reticulocyte	21.8	10.0 - 110.0 K/µL	

15 © 2018 IDEXX Laboratories, Inc. All rights reserved.

RBC parameters: what's significant and what isn't

 \circ Hemoglobin x 3 = PCV

• Absolute reticulocyte count most accurate way to determine if anemia regenerative

• Changes in RBC indices (\uparrow MCV, \downarrow MCHC) in only 8-11% with regenerative anemia

Reticulocytosis without anemia may indicate underlying disease

- Reticulocyte-hemoglobin early marker of iron deficiency RETIC-HGB
 - RBC indices are mean values slow to change when new cells produced

Is this anemia regenerative or nonregenerative? (Do the RBC indices help classify?)

Test	Results	Reference Interval		LOW	NORMAL	HIGH
ProCyte Dx (Ma	ay 13, 2019 2:4	41 AM)				
RBC	2.28 M/µL	5.65 - 8.87	LOW			
HCT	15.9 %	37.3 - 61.7	LOW			
HGB	5.1 g/dL	13.1 - 20.5	LOW	0		
MCV	69.7 fL	61.6 - 73.5				
MCH	22.4 pg	21.2 - 25.9			100 a 100 a	
MCHC	32.1 g/dL	32.0 - 37.9				
RDW	18.7 %	13.6 - 21.7				
%RETIC	18.2 %			1.		
RETIC	413.8 K/µL	10.0 - 110.0	HIGH			
RETIC-HGB	17.1 pg	22.3 - 29.6	LOW			

RBC parameters: what's significant and what isn't

- \circ Hemoglobin x 3 = PCV
- o Absolute reticulocyte count most accurate way to determine if anemia regenerative
 - Changes in RBC indices (↑ MCV, ↓ MCHC) in only 8-11% with regenerative anemia
- Reticulocytosis without anemia can indicate underlying disease
- Reticulocyte-hemoglobin early marker of iron deficiency RETIC-HGB
 - RBC indices are mean values slow to change when new cells produced

10-year-old, spayed female mixed-breed dog

Test	Results	Reference Interval	LOW	NORMAL	HIGH
ProCyte Dx					
RBC	6.2 x10^12/L	5.7 - 8.9			
HCT	43.2 %	37.5 - 61.7			
HGB	14.4 g/dL	13.1 - 20.5			
MCV	69.4 fL	61.6 - 73.5			
MCH	23.1 pg	21.2 - 25.9			
MCHC	33.3 g/dL	32.0 - 37.9			
RDW	19.1 %	13.6 - 21.7			

19 © 2018 IDEXX Laboratories, Inc. All rights reserved.

IDEXX

Reticulocyte count high in 5-10% dogs *without* anemia*

20 © 2018 IDEXX Laboratories, Inc. All rights reserved.

*I million CBCs, Dr. DeNicola

IDEXX

Find this before it ruptures

RBC parameters: what's significant and what isn't

- \circ Hemoglobin x 3 = PCV
- o Absolute reticulocyte count most accurate way to determine if anemia regenerative
 - Changes in RBC indices (↑ MCV, ↓ MCHC) in only 8-11% with regenerative anemia
- o Reticulocytosis without anemia may indicate underlying disease
- Reticulocyte-hemoglobin (RETIC-HGB) early marker of iron deficiency
 - Measure of iron availability for hemoglobin production in bone marrow
 - RBC indices are mean values slow to change when new cells produced

Reticulocyte hemoglobin. RETIC-HGB. Measure of iron availability

Jun 18 Jun 16

2019

Graphing		Result Details 🗸	Add to Order	• •
Hematology	Today 4:43 AM	Rectangular Sn		
> 🐝 RBC	5.81	5.39 - 8.7 M/µL		
> % Hematocrit	45.0	38.3 - 56.5 %		
> 👭 Hemoglobin	14.7	13.4 - 20.7 g/dL		
> % MCV	77	59 - 76 fL		
> 👭 МСН	25.3	21.9 - 26.1 pg		
> 👭 МСНС	32.7	32.6 - 39.2 g/dL		
> % Reticulocyte	0.3	%		
> 🔨 Reticulocytes	17	10 - 110 K/µL		
Reticulocyte Hemoglobin	26.2	22.3 - 29.6 pg		

Iron required for hemoglobin production

Must be available in the bone marrow.

Courtesy of Dr. Graham Bilbrough

Macrophages in bone marrow 'feed' iron to developing RBCs

25 © 2018 IDEXX Laboratories, Inc. All rights reserved.

RETIC-HGB indicates iron availability in bone marrow. It *decreases* with...

External bleeding (true iron deficiency) Inflammation (Iron trapped in macrophages) Image: Inflammation (Iron trapped in macrophages) Image: Image:

Detect decreased iron availability in days (not months).

WBC facts – hidden gems of 5 (make that 6) part differential

 $_{\odot}$ Total WBC and neutrophil count normal in 50% of dogs and cats with severe infection/inflammation

 \circ Left shift and/or toxic changes double mortality

o Normal lymphocyte count in a sick patient? Suspect which diseases...?

○ 3 'patterns' to leukogram – inflammatory, stress, and ????

• How high can neutrophil count be due to stress?

Apollo 14-year-old, neutered male Labrador retriever

Presenting complaints: vomiting, respiratory distress, severe sudden-onset depression

o History:

- Referred from boarding kennel
- Recently boarded and become ill while boarding
- Gradual muscle mass loss over several years

• Physical examination findings:

- Labored breathing harsh lung sounds
- Severe muscle wasting
- Weakness

Apollo's WBC picture

Test	Results	Reference Interval	LOW	NORMAL	HIGH	
ProCyte Dx (August 10, 2017	7 10:27 AM)				
WBC	7.16 K/µL	5.05 - 16.76				
NEU	* 0.16 K/µL	2.95 - 11.64 LOW		-		
BAND	* Suspected		25			
LYM	* 2.87 K/µL	1.05 - 5.10	8) 			
MONO	* 4.07 K/µL	0.16 - 1.12 HIGH	Q.			
EOS	0.06 K/µL	0.06 - 1.23	80			
BASO	0.00 K/µL	0.00 - 0.10	83			
Band neutrophils suspected						
WBC Abnormal Distribution						

* Qualified results—confirm with dot plot and/or blood film review

Apollo's daily CBCs...

Date	4/28/17	8/10/17	8/11/17	8/12/17	8/15/17	8/31/17
Band	-	+	+	+	+	-
WBC (K/µL) (5.05–16.76)	10.58	7.16	8.72	8.84	11.08	10.23

The truth about platelets

 \circ Clumping is unavoidable – 70% of feline samples

• All automated analyzers are affected by platelet clumps - count increased or decreased?

o Verify all low platelet counts - dot plot/graphics, blood film review

 \circ Blood film \rightarrow platelets/HPF x 15,000 = platelet estimate

Thrombocytosis on biochemical panel – what parameter changes?

• Platelet count can be 10,000 in perfectly normal patient (no petechiae)

What diseases cause thrombocytopenia? Which cause bleeding?

o Infectious disease

- Vector-borne (may be only evidence of disease)
- FeLV/FIV
- Many others
- Inflammation
- Cancer

Bleeding threshold 30-50K

Immune-mediated thrombocytopenia

- Lowest platelet counts = highest bleeding risk
- Dogs can look perfectly normal
- Fortunately the least common

Biochemistry clues

34	© 2016 IDEXX Laboratories	Inc. All rights reserved
· · ·		

TEST		RESULT	DECEDENCE VALUE	
Glucose		3.83	3.5 - 6.33 mmol/L	
IDEXX SDMA	a	13	0 - 14 ug/dL	
Creatinine		97.24	44.2 - 132.6 umol/L	
BUN		9.28	3.21 - 11.07 mmol/L	
BUN: Creatinine Ratio		23.6		
Phosphorus		1.91	0.81 - 1.97 mmol/L	
Calcium		2.3	2.1 - 2.94 mmol/L	
Sodium		149	142 - 152 mmol/L	
Potassium		4.8	4.0 - 5.4 mmol/L	
Na: K Ratio		31	28 - 37	
Chloride		107	108 - 119 mmol/L	L
TCO2 (Bicarbonate)		24	13 - 27 mmol/L	
Anion Gap		23	11 - 26 mmol/L	
Total Protein		72	55 - 75 g/L	
Albumin		31	27 - 39 g/L	
Globulin		41	24 - 40 g/L	н
Albumin: Globulin Ratio		0.8	0.7 - 1.5	
ALT		19	18 - 121 U/L	
AST		30	16 - 55 U/L	
ALP		23	5 - 160 U/L	
GGT		1	0 - 13 U/L	
Bilirubin - Total		1.71	0 - 5.13 µmol/L	
Bilirubin - Unconjugated		0	0 - 3.42 µmol/L	
Bilirubin - Conjugated		1.71	0 - 1.71 µmol/L	
Cholesterol		6.05	3.39 - 8.92 mmol/L	
Creatine Kinase		165	10 - 200 U/L	

IDEXX

Lots to see here... electrolytes mandatory. Look at trends to determine significance.

o Increased BUN with normal creatinine/SDMA (or increased BUN:creatinine ratio)

o ALP vs ALT increase – which is more worrisome?

• ALP and GGT

- $\circ\,$ Hyper- and hypocalcemia
- Hyperkalemia when everything else is normal ???
- o High TCO2 with low electrolytes ???

o SDMA

35 © 2018 IDEXX Laboratories, Inc. All rights reserved.

Interpretation of ALKP and GGT together

© 2007 Elsevier
Paulie

Clinical Che	emist	ry Pro	file							
GLU	125	mg/dL		(77	-	125)		
BUN	22	mg/dL		(7	-	27)		
CREA	1.3	mg/dL		(0.5	-	1.8)		
Caz	8.0	mg/dL		(7.9	-	12.0)		
TP	5.5	g/dL		(5.2	-	8.2)		
ALB	2.8	g/dL		(2.2	-	3.9)		
GLOB	2.7	g/dL		(2.5	-	4.5)		
ALT	275	U/L	HIGH	(10	-	100)		
ALKP	600	U/L	HIGH	(23	-	212)		
GGT	88	U/L	HIGH	(0	-	7)		
TBIL	1.9	mg/dL	HIGH	(0.0	-	0.9)		
AMY	707	U/L		(500	-	1500)		
LIPA	2100	U/L	HIGH	(200	-	1800)		

Paulie

Abigail - Chemistry

Test	Results	Reference	Interval	LOW	NORMAL	HIGH	
Chemistry							1 year Earlier
GLU BUN CREA BUN/CREA PHOS CA Na K CI TP ALB GLOB	95 mg/dL 11 mg/dL 1.1 mg/dL 10 3.9 mg/dL 9.3 mg/dL 160 mmol/L 3.4 mmol/L 121 mmol/L 6.8 g/dL 3.6 g/dL 3.2 g/dL	74 - 143 7 - 27 0.5 - 1.8 2.5 - 6.8 7.9 - 12.0 144 - 160 3.5 - 5.8 109 - 122 5.2 - 8.2 2.3 - 4.0 2.5 - 4.5	LOW				98 mg/dL 19 mg/dL 1.6 mg/dL 12 4.0 mg/dL 10.9 mg/dL 157 mmol/L 4.7 mmol/L 4.7 mmol/L 6.8 g/dL 4.0 g/dL 2.8 g/dL
ALB/GLOB	1.1	10 100		25			1.4
ALT ALKP	> 2000 U/L 945 U/L	10 - 100 23 - 212	HIGH HIGH				103 U/L 53 U/L
GGT	21 U/L	0 - 7	HIGH				< 0 U/L
TBIL	18.4 mg/dL	0.0 - 0.9	HIGH				0.4 mg/dL
CHOL	229 mg/dL	110 - 320					192 mg/dL
AMYL	267 U/L	500 - 1500	LOW				720 U/L
LIPA	407 U/L	200 - 1800					1806 U/L
ALT:Test resu	ilts for the latest and	alyzer run have be	en multiplie	d by the dilution	factor for a dilution of	1 in 2 total.	

39 © 2018 IDEXX Laboratories, Inc. All rights reserved.

Joe – 11-yr-old MN Mixed Breed. No clinical signs.

•	<u>الالا</u> 12/	20/2013 (Order Received) 21/2013 @ 7:13 am (Last Updated)	IDEXX Reference Laboratories Show Details	5/12/08
ALT	96	5 - 107 U/L		204
) AST	21	5 - 55 U/L		
) ALP	244	10 - 150 U/L		20
▶ GGT	^b 320	0 - 14 U/L		
🕨 Bilirubin - Total	0.2	0.0 - 0.4 mg/dL		

Patty, 10-yr-old SF German shepherd: Presenting complaint - hematuria.

Chemistry					
GLU	141 mg/dL	(74 -	143)	
BUN	11 mg/dL	(7 -	27)	
CREA	1.3 mg/dL	(0.5 -	1.8)	
BUN/CREA	8				
PHOS	3.6 mg/dL	(2.5 -	6.8)	
Ca	9.7 mg/dL	(7.9 -	12.0)	
Na	155 mmol/L	(144 -	160)	
К	3.5 mmol/L	(3.5 -	5.8)	
Cl	116 mmol/L	(109 -	122)	
TP	6.5 g/dL	(5.2 -	8.2)	
ALB	3.0 g/dL	(2.3 -	4.0)	
GLOB	3.5 g/dL	(2.5 -	4.5)	
ALB/GLOB	0.9				
ALT	10 µ/L	(10 -	100)	
ALKP	85 μ/L	(23 -	212)	
GGT	40 µ/L	HIGH (0 -	7)	
TBIL	0.1 mg/dL	(0.0 -	0.9)	
CHOL	154 mg/dL	(110 -	320)	
AMYL	1329 µ/L	(500 -	1500)	
LIPA	430 µ/L	(200 -	1800)	

41 © 2018 IDEXX Laboratories, Inc. All rights reserved.

What about cats?

© 2007 Elsevier

Lots to see here... electrolytes mandatory

• When only the BUN is high (or increased BUN:creatinine ratio)

• ALP vs ALT increased - which is more worrisome?

 $\,\circ\,$ ALP and GGT

• Hyper- and hypocalcemia

- Hyperkalemia when everything else is normal ???
- High TCO2 with low electrolytes ???
- \circ SDMA

Calcium detour: Should we be talking about ionized calcium?

Total or ionized calcium?

 \circ Total = ionized (free) + protein bound + complexed

Normal total calcium does not rule out ionized hypercalcemia

• Canine study¹: 40% with ionized hypercalcemia had normal total calcium

• Hypoalbuminemia in only 7 of 31 with normal total calcium

 $_{\odot}$ Dogs with kidney disease: total hypercalcemia 20%, ionized hypercalcemia 10%

Feline study: 64% of cats with ionized hypercalcemia had normal total calcium
 Cats with kidney disease: total hypercalcemia 20%, ionized hypercalcemia 30%

1. Johnsen CT et al. ECVIM-CA Congress. 2019.

Investigation of the Relationship Between Ionised and Total Calcium in Dogs with Ionised Hypercalcaemia

29th ECVIM-CA Congress, 2019

C.T. Johnsen; T. Schnabel; A. Gow; J. del-Pozo; E. Milne; V. Macklin; C. Fisher; I. Handel; R. Mellanby University of Edinburgh, Midlothian, UK

- o Teaching hospital 2012-2017
 - 75 dogs had ionized hypercalcemia of which 31 had normal total calcium
 - 7 of those 31 had hypoalbuminemia
 - Most common diagnoses in dogs with ionized hypercalcemia neoplasia (n=38), primary hyperparathyroidism (n=6)

40% dogs with ionized hypercalcemia had normal total calcium concentration

Cannot be assumed that dogs with normal calcium do not have ionized hypercalcemia.

Hypercalcemia revisited

 \circ Cats

- Idiopathic
- Renal failure (tCa 20%, iCa 30%)
- Neoplasia (lymphoma=carcinoma)
- $\circ \text{ Dogs}$
 - Neoplasia (lymphoma>>>>carcinoma)
 - Hypoadrenocorticism
 - Primary hyperparathyroidism
 - Renal failure (tCa 20%, iCa 10%)

Idiopathic hypercalcemia

- Most common cause of hypercalcemia in cats; uncommon in dogs
- Young to middle-age
- \circ No breed or sex predilection, longhaired cats overrepresented
- $_{\odot}$ No clinical signs in 50%; wt loss, anorexia, GI signs in 50%
- Most non azotemic initially, may develop over time
- $_{\odot}$ Calcium oxalate uroliths in 10-15%
- Diagnosis of exclusion, r/o neoplasia, kidney disease, primary hyperparathyroidism

Diagnostic criteria for idiopathic hypercalcemia

o lonized hypercalcemia

- \circ Decreased (or low normal) parathormone
- $_{\odot}$ Exclusion of other causes of hypercalcemia

Idiopathic hypercalcemia treatment

o Diet - questionable benefit, not harmful, worth a 6-8 wk trial?

- Canned increased moisture content minimizes CaOx
- Hi fiber Purina OM Overweight Management, Royal Canin Gastrointestinal Fiber Response HF, Iams Intestinal Plus Low-Residue, Hill's w/d
- Renal Diets protein restriction may cause muscle wasting
- "Stone' Diets Royal Canin Urinary SO, Purina UR Urinary St/Ox, Iams Urinary-O Plus Moderate pH/O, Hill's c/d
- Home prepared Ca-restricted nutritionist
- Natural composition hi protein/fat, low carbohydrate

Idiopathic hypercalcemia medical management

Prednisone (catabolic, diabetogenic)

- 5 mg/cat/day, recheck at 1 mo
- Dose increase to 10, 15, 20 mg/cat/day
- 1/3 cats develop diabetes
- \circ Bisphosphonates
 - Alendronate (Fosomax®) 10 mg PO/cat/week (up to 30 mg)
 - 12 hr fast imperative; maintain fast >2 h post pill
 - Esophagitis 6 cc H20, butter on lips (licking/salivation)
 - Not diabetogenic
 - Pamidronate, 1-2 mg/kg IV in 0.9% NaCl over 1-2 h, q3-4 wk
 - Q 1-2 mo for IHC

6-yr-old male neutered Boxer

Test	Results	Reference Interva	al LOW	NORMAL	HIGH
Catalyst Dx (S	September 28	, 2009 10:15 AM	A)		
GLU	106 mg/dL	74 - 143			
BUN	14 mg/dL	7 - 27			
CREA	1.6 mg/dL	0.5 - 1.8			
BUN/CREA	9			· ·	
PHOS	3.1 mg/dL	2.5 - 6.8			
CA	14.3 mg/dL	7.9 - 12.0 HIGH	1		
TP	7.2 g/dL	5.2 - 8.2			
ALB	3.4 g/dL	2.3 - 4.0			
GLOB	2.7 g/dL	2.5 - 4.5			
ALB/GLOB	1.3				
ALT	17 U/L	10 - 100			
ALKP	78 U/L	23 - 212			
GGT	1 U/L	0 - 7			
TBIL	0.5 mg/dL	0.0 - 0.9			
CHOL	290 mg/dL	110 - 320			
AMYL	1101 U/L	500 - 1500			
LIPA	2397 U/L	200 - 1800 HIGH	1		
VetLyte (Sept	ember 28, 20	09 10:15 AM)			
Na	160 mmol/L	144 - 160			
К	4.7 mmol/L	3.5 - 5.8			
CI	109 mmol/L	109 - 122			
SNAPshot Dx	(September	28, 2009 10:15	AM)		
T4	1.7 µg/dL				
Canine:					
< 0.8 µg/dl	Low				
0.8 - 1.5 µg/dl	Borderline Low				
1.6 - 5.0 µg/dl	Normal				
> 5.0 µg/dl	High				
3.0 - 6.0 µg/dl	Therapeutic Ra	nge			

Dogs with no clinical signs of hypothyroidism and results within the normal reference range are likely euthyroid. Dogs with low T4 concentrations may be hypothyroid or "euthyroid sick". Occasionally, hypothyroid dogs can have T4 concentrations that are low normal. Dogs with clinical signs of hypothyroidism and low or low normal T4 concentrations may be evaluated further by submission of freeT4 (fT4) and canine T5H. A high T4 concentration in a clinically normal dog is likely a variation of normal; however elevations may occur secondary to thyroid autoantibodies or rarely thyroid neoplasia. For dogs on thyroid supplement, acceptable 4-6 hour post pill total T4 concentrations generally fall within the higher end or slightly above the reference range.

UA Analyzer (September 28, 2009) 10:15 AM) GLU neg 10:15 AM) pH 7.5 7.5 PRO neg 10:15 AM) UBG neg 10:15 AM)

BIL neg BLD 3+

BLD 3+ S.G.

ے سے ا

6-yr-old male neutered Boxer

What is the diagnosis?

	1/1	13/2014 (Order Received) 21/2014 @ 1:45 am (Last Updated)	IDEXX Reference Laboratories Show Details
Calcium	^a 2.6	8.8 - 11.2 mg/dL	
Ionized Calcium	^b 0.32	1.07 - 1.40 mmol/L	
	a RESULT VER	RIFIED BY REPEAT ANALYSIS	
	^b Referral t	est performed at Michigan State U	niversity.

Same approach with glucose insulin panel for insulinoma.

First look at glucose. If low what SHOULD insulin level be...?

	1/ 1/	13/2014 (Order Received) 21/2014 @ 1:45 am (Last Updated)	IDEXX Reference Laboratories
Parathyroid Hormone	0.1	0.5 - 5.8 pmol/L	

Lots to see here... electrolytes mandatory

• When only the BUN is high (or increased BUN:creatinine ratio)

• ALP vs ALT increased - which is more worrisome?

 $\,\circ\,$ ALP and GGT

o Hyper- and hypocalcemia

• Hyperkalemia when everything else is normal ???

• High TCO2 with low electrolytes ???

o SDMA

SDMA greater sensitivity - may be the first *and only* sign of decreased kidney function; not affected by \downarrow muscle mass.

SDMA is more sensitive: Increases earlier than creatinine and decreased specific gravity.

Sources

Nabity ,MB, et al. Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. J Vet Intern Med. 2015;29(4):1036–1044.
 Hall JA et al. Serum concentrations of symmetric dimethylarginine and creatinine in dogs with naturally occurring chronic kidney disease. J Vet Intern Med. 2016;30(3):794–802.
 Hall JA, et al. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med. 2014;28(6):1676–1683.

What increased SDMA means...

Courtesy of Dr. Jeff Niziolek

57 © 2018 IDEXX Laboratories, Inc. All rights reserved.

Any cause of decrease GFR may increase SDMA. Correct underlying cause and SDMA may normalize.

- o Prerenal
 - Dehydration
 - Trauma/shock—hypotension
 - Anesthesia
 - Cardiac disease
 - Sepsis
 - Thrombosis, infarct
 - Burn injury, heat stroke
 - Transfusion reaction
 - Hyperviscosity, polycythemia

o Renal:

- Kidney disease: CKD, acute kidney injury, kidney stones
- Infection/infectious: pyelonephritis, FIP, sepsis, heartworm
- Immune mediated: Lyme nephritis, vasculitis
- Metabolic: pancreatitis, hypercalcemia
- Neoplasia: lymphoma
- Toxin: Iily, NSAID, ethylene glycol (antifreeze), aminoglycoside antibiotics

• Postrenal:

- Urethral obstruction
- Ureteral obstruction
- Urinary tract trauma/disruption: tear, rupture, blood clot

Within 12 months of first *mild* increase in SDMA:

of patients risk impaired kidney function

© 2018 IDEXX Laboratories, Inc. All rights reserved 59

Download IDEXX SDMA Algorithm under the recourse tab

The IDEXX SDMA® Algorithm

and on the at the for Europationed, inc. Westbrook, Maine UOA.

IRIS guidelines for diagnosing, staging, and treating chronic kidney disease in dogs and cats. Wait there's more...

Diagnosing, Staging, and Treating Chronic Kidney Disease in Dogs and Cats

Chronic kidney disease (CKU) is diagnosed based on evaluation of all available clinical and diagnostic information in a stable patient. Following diagnosis of CKD, the IRIS Board recommends using serum creatinine or SDMA (ideally both) to stage CKD with substaging based on assessment of arterial blood pressure and proteinuria. Updated September 2019

Source: International Renal Interest Society (IRIS). IRIS Staging of CKD. IRIS website. http://www.iris-kidney.com/guidelines/staging.html. Accessed October 31, 2019.

61 © 2018 IDEXX Laboratories, Inc. All rights reserved.

This website is designed to bring you news and information regarding the work of IRIS. The mission of IRIS is to help veterinary practitioners better diagnose, understand and treat kidney disease in cats and dogs. We hope you find this site useful and informative.

IRIS Guidelines

For assistance in your day to day management of patients with CKD:

- IRIS Staging of Chronic Kidney Disease (CKD) - including algorithms
- IRIS Treatment Recommendations for CKD
- IRIS Grading of Acute Kidney Injury (AKI)
- (AKI) Read more

Education

 Provides additional information on specific aspects of kidney diseases.

Contains regularly updated articles written by IRIS Board members.

Read more

Emerging Themes NEW

Read more

 Current topics being discussed and investigated in veterinary nephrology
 Includes occasional articles from IRUS Board members and invited authors

About IRIS

- For information on:
- Members of IRIS
- IRIS and Osborne AwardsProjects supported by IRIS
- IRIS Newsletters
- Bylaws

Read more

62 © 2018 IDEXX Laboratories, Inc. All rights reserved.

IDEXX

IRIS 2019 update...Creatine and SDMA for primary staging

		P	P		
		Stage 1 No azotemia (Normal creatinine)	Stage 2 Mild azotemia (Normal or mildly elevated creatinine)	Stage 3 Moderate azotemia	Stage 4 Severe azotemia
Creatinine in Stage	µmol/L Canine	Less than 125 (1.4 mg/dL)	125—250 (1.4-2.8 mg/dL)	251-440 (2.9-5.0 mg/dL)	Greater than 440 (5.0 mg/dL)
stable creatinine	Feline	Less than 140 (1.6 mg/dL)	140-250 (1.6-2.8 mg/dL)	251-440 (2.9-5.0 mg/dL)	Greater than 440 (5.0 mg/dL)
SDMA* in µg	/dL Canine	Less than 18	18–35	36–54	Greater than 54
based on stable SDMA	Feline	Less than 18	18–25	26–38	Greater than 38
UPC ratio Substage	Canine	Nonproteinur	ric < 0.2 Borderline pr	oteinuric 0.2–0.5 Prot	teinuric >0.5
based on proteinuria	Feline	Nonproteinur	ric < 0.2 Borderline pr	oteinuric 0.2–0.4 Prot	teinuric >0.4
Systolic bloo pressure in r	od nm Hg	N	ormotensive <140 Pr	rehypertensive 140–15	9
Substage based blood pressure	on	Нур	pertensive 160-179 Se	everely hypertensive ≥	180

63 © 2018 IDEXX Laboratories, Inc. All rights reserved.

Complete urinalysis – you'll be glad you did.

TEST	RESULT	REFERENCE VALUE
Clarity	CLEAR	
Specific Gravity	1.011	
pH	7.0	
Urine Protein	a 2+ (200-300 mg/dL)
Glucose	NEGATIVE	
Ketones	NEGATIVE	
Blood / Hemoglobin	NEGATIVE	
Bilirubin	NEGATIVE	
Urobilinogen	NORMAL	
White Blood Cells	0-2	0 - 5 HPF
Red Blood Cells	0-2	HPF
Bacteria	NONE SEEN	
Epithelial Cells	RARE (0-1)	
Mucus	NONE SEEN	
Casts	NONE SEEN	
Crystals	NONE SEEN	

Complete u/a with sediment – fresh is best. Within 30 min.

• Crystals form - which?

o Bacteria – increase or decrease (lyse) or become nonviable

○ RBCs, WBCs – decrease

 \circ Casts – decrease

Epithelial cell morphology – changes

• Rule out postrenal proteinuria before submitting UP/C

o Gross AND microscopic hematuria can affect UP/C

65 © 2018 IDEXX Laboratories, Inc. All rights reserved.

2015 Big year for proteinuria and urine protein:creatinine. IRIS updated proteinuria recommendations.

- \circ New normal UP/C \rightarrow <0.2
- \circ New treatment trigger UP/C \rightarrow >0.4 (cat), >0.5 (dog)
- \circ New treatment stage \rightarrow Stage I CKD
- \circ Clinical relevance \rightarrow more UP/Cs
- Urine protein/creatinine ratio (UP/C) a MUST dipstick not quantitative regardless of USG

When to run a UP/C

 $\,\circ\,$ Dipstick positive for protein \rightarrow any amount regardless of specific gravity

• Sediment exam to rule out pre and post renal proteinuria before running UP/C

 $\,\circ\,$ Any kidney workup \rightarrow even if dipstick negative for protein

- Dipstick detects ≥ 30 mg/dL
- UP/C detects \geq 5 mg/dL

 \circ Microalbuminuria detects \geq 2 mg/dL

- Negative \rightarrow rules out proteinuria
- Positive \rightarrow significance in dogs and cats unknown \rightarrow UPC

Proteinuria treatment in CKD – renal diet plus...

- Benazepril or enalapril, 0.25-0.5 mg/kg q12-24h starting dose (max 2 mg/kg/d)
 - SDMA/creat 5-7d and UP/C 4-8wk after start or dose change
- Telmisartan, 1 mg/kg/d (max 2 mg/kg/d)
- Omega-3 fatty acid, 0.25-0.5 mg/kg/d EPA/DHEA
- Aspirin if albumin < 2.0 g/dl, 1-5 mg/kg/d dog; 1 mg/kg q72h cat
- o Amlodipine after maximal safe dose of ACEI/telmisartan
 - May decrease proteinuria in cats
 - Cat <4 kg 0.625 mg/cat/d
 - Cat ≥ 4 kg 1.25 mg/cat/d

The Veterinary Journal 247 (2019) 8-25 Contents lists available at ScienceDirect

The Veterinary Journal

journal homepage: www.elsevier.com/locate/tvjl

International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats Check for updates

The <u>Veterinary</u> Journal

J. Scott Weese^{a,*}, Joseph Blondeau^{b,c}, Dawn Boothe^d, Luca G. Guardabassi^{e,f}, Nigel Gumley^g, Mark Papich^h, Lisbeth Rem Jessenⁱ, Michael Lappin^j, Shelley Rankin^k, Jodi L. Westropp^I, Jane Sykes^I

Optimal sample for urine culture

- \circ Cystocentesis unless contraindicated
 - Ultrasound guided if small bladder, obese, pyometra, etc.

 \circ Process immediately or refrigerate and culture within 24h

- Culture voided samples ONLY if cystocentesis contraindicated AND:
 - · Cultured in house or refrigerated and processed within few hours at lab
 - Interpret w/ cytology, signs, quantity, species, +/- pure culture
 - Same for catheterized samples

"Sporadic bacterial cystitis"

o Bacterial infection of bladder causing inflammation and clinical signs.

o <u>Uncommon in:</u>

- Cats (esp. young) feline idiopathic cystitis / urolithiasis
- Intact male dogs prostatitis until proven otherwise
- o "Recurrent bacterial cystitis"
 - ≥3 episodes clinical cystitis in 12 months or ≥2 in 6 months
- o Subclinical bacteriuria
 - Culture positive bacteriuria without clinical signs

Treatment of bacterial cystitis

- $_{\odot}$ Amoxicillin first choice
 - 11-15 mg/kg PO q8-12h
 - DURATION: 3-5 days (3 may be optimal)
 - +/- treat pending culture results
 - If organism not susceptible but clinical cure no change in drug
 - If no clinical response in 48h check compliance and underlying disease
- \circ NSAIDs
 - Signs are due to inflammation
 - Use pending culture results or as standard therapy
 - Usual precautions apply, esp. cats
- Cranberry extract, D-mannose, probiotics, bladder infusions, methanamine not recommended (no good evidence)
- $_{\odot}$ Post-treatment u/a or culture not recommended if signs resolve
Treatment of recurrent bacterial cystitis

 $\circ\,$ Investigate for underlying cause before further antibiotics

- Endocrinopathy, CKD, uroliths, obesity, ectopic ureter...
- $_{\odot}$ Empirical treatment, +/- NSAID as for bacterial cystitis
- $_{\odot}$ Change antibiotic if organism resistant AND no clinical cure

o DURATION 3-5 days

- $_{\odot}$ 7-10 days if persistent/relapsing infection, or bladder wall invasion
- o Cranberry extract, D-mannose, probiotics, bladder infusions, methanamine not recommended
- o Culture 5-7 d after starting long duration treatment
 - If + confirm compliance and evaluate further
- o Culture 5-7 d after treatment
 - If + with signs further evaluation and referral for cystoscopy
 - If + but no signs approach as for subclinical bacteriuria

Pyelonephritis

 $_{\odot}$ Infection of renal parenchyma from ascending infection or bacteremia

- Fluoroquinolone (or cefpodoxime)
 - Enrofloxacin: 15-20 mg/kg q24h (dog), 5 mg/kg q24h (cat)
 - Marbofloxacin: 2.7-5.5 mg/kg q24h (dog, cat)
 - Pradofloxacin: 3-5 mg/kg q24h (dog), 5-7.5 mg/kg q24h (cat)

o DURATION 7-10 days

 \circ If no clinical improvement in 72 h reconsider diagnosis

- Subclinical bacteriuria (stop antibiotics)
- Ureteroliths, neoplasia, ectopic ureter...

• Recheck examination, labwork, urine culture 1-2 wk post treatment

Bacterial prostatitis

- $_{\odot}$ Consider in every intact male with bacterial cystitis
- $_{\odot}$ Culture and cytology of 3rd fraction of ejaculate
- $_{\odot}$ Urine culture likely to yield same organism (not always)
- o Screen for Brucella canis
- o Fluroquinolone (or trimethoprim-sulfa drug 15-30 mg/kg q12h)
 - Clindamycin, macrolides, fosfomycin ok based on culture
 - No penicillins, cephalosporins, aminoglycosides, tetracyclines, cipro

o DURATION 4-6 weeks

- \circ Drain prostatic abscesses
- $_{\odot}$ Castrate as early as possible

Subclinical bacteriuria

 Subclinical bacteriuria = positive culture of cystocentesis sample with no clinical evidence of infectious urinary tract disease

o Treatment not recommended

- Spontaneous resolution; MDR organisms replaced by less resistant organisms
- No evidence for risk of UTI or other infectious complications reported in dogs or cats if untreated
- $_{\odot}\,$ Therefore few indications for urine culture in animals with no signs
 - · Including those with diabetes mellitus, hyperadrenocorticism
 - If culture done and positive full evaluation for causes of bacteriuria
- $\circ\,$ Repeat culture not recommended whether or not treated

Treatment for SBU should not be based on:

- Pyuria or other cytological abnormalities
- Bacteria number (CFU/ml)
 - >100 CFU/ml can be seen in SBU, no greater risk of disease development
- Multidrug resistance
 - MDR genes not virulence factors (organism may be LESS virulent)
- Infection control (eliminate shedding) of MDR organisms
 - Organism originate from GI tract, will recolonize bladder if treated
- Consider treating if:
 - Spinal cord injury color/odor of urine not predictive of bacterial cystitis
 - Corynebacterium urealyticum encrusting cystitis risk
 - Urease-producing bacteria (staphylococci) struvite urolith risk
 - **DURATION 3-5 days** (if encrusting cystitis or urolith ruled out)

Ancillary treatment to prevent recurrence

 \circ Cranberry extract \rightarrow inhibit *E.coli* attachment (prevention)

 \circ D-mannose \rightarrow inhibit *E. coli* attachment (prevention)

 \circ N-acetyl cysteine \rightarrow biofilm penetration

 \circ Glucosamine / chondroitin sulfates / antioxidants \rightarrow bladder mucosal health

- $\circ~\mbox{Probiotic}$ diverse bacterial population, e.g. $\mbox{Proviable}^{\mbox{\tiny I\!R}}$ \rightarrow less resistant organisms
 - Dose to administer billions of colonies, e.g., 5 billion/capsule Proviable[®]
- \circ Phenylpropanolamine (female dogs) \rightarrow minimize ascending infections

⁷⁸o Fecal transplantation after resolution to decrease resistance

Critically important antimicrobials

o 2 criteria:

- · Sole or one of few agents to treat serious human disease
- Used for organisms that may be transmitted by or acquire resistance from non-human sources
- $_{\odot}\,$ Veterinary approved
 - Aminoglycosides, 3rd/4th generation cephalosporins, fluoroquinolones, macrolides

 \circ Human

Carbapenems (imipenem, meropenem), fosfomycin, vancomycin

Critical important antibiotics: doses.

 $_{\odot}$ Fosfomycin, 40 mg/kg q12 h for 5-10 d

 $_{\odot}$ Meropenem, 8-10 mg/kg SC q12 h 7-10 d

(Vancomycin – absolute last resort to avoid suffering)

Consider doxycycline (if organism susceptible)

Thank you!

• • •

• • •

 \bullet \bullet