Diagnosis, Treatment and Prevention of Infectious Diseases in the City: New for 2016

Richard E Goldstein

DVM DACVIM DECVIM-CA

The Animal Medical Center

New York, NY

Screening for Tick Borne Diseases - What about Non-Clinical Dogs? Should We??

Goals of Screening

- To treat if justified
 - To prevent damage/disease
 - Lyme nephritis
- To serve as marker for infected ticks
 - Co-infections
 - Public health
 - Improve tick control
 - Vaccinate

INCREASING PREVALENCE OF LYME DISEASE

CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) PREVALENCE MAP¹

HUMANS 2014

COMPANION ANIMAL PARASITE COUNCIL (CAPC) PREVALENCE MAP³

1 dot placed randomly within county of residence for each confirmed case

- 28% increase in human incidence rate between 2005 and 2013, with 30,000 cases reported annually²
- CDC believes actual cases to be closer to 329,000 per year²

CANINES 2015

- LOW MODERATE HIGH
- 1 in 16 dogs tested were positive for Lyme disease in 2015³
- 166,000 cases per year³

More Than Just Lyme!

- Lyme disease/Lyme borreliosis Borrelia burgdorferi
- Ehrlichiosis/Anaplasmosis
 - Ehrlichia canis, Ehrlichia ewingii, Ehrlichia chaffeensis
 - Anaplasma phagocytophilum, Anaplasma platys
- Rocky Mountain spotted fever
 Rickettsia rickettsii
- Babesiosis

Babesia canis, Babesia gibsoni

- Bartonella
- Canine hepatozoonosis

Hepatozoon americanum Hepatozoon canis

Antibodies to Anaplasma in Dogs

2014 Predicted Anaplasmosis Prevalence

Antibodies to Ehrlichia spp., Dogs

E. ewingii

Beal et al 2012

Canine Tick Borne Disease Testing

C6 Testing

VlsE Protein of B. burgdorferi

- •34 kDa surface lipoprotein
- IR₆ is one of six invariable regions within the central variable domain
- •Six variable regions (VR_I IR_{VI}) are interspersed

AccuPlex

- Bio-CD
 - OspA
 - OspC
 - OspF
 - P31
 - SLP

AccuPlex⁴

Tests for: Lyme disease, Heartworm, Ehrichion & Araph

Introducing the New Standard for Canine Vector Borne Disease Screening

"Non Clinical" Lyme Cases

Treatment – Reasonable Approach?

Treatment

- Antibiotic Tx usually results in rapid response
 - Doxycycline drug of choice because of coinfections – disadvantages
 - Oral, side effects
 - Recall!
 - Treat for at least 30 days, but still can not guarantee removal of the organism.
 - Convenia
 - Effective 2 doses 2 weeks apart
- Re-Tx reoccurrences.

What About Sick Dogs??

Combining serology with PCR

	Serology	Polymerase Chain Reaction (PCR)
Measures	Antibody response of host	Nucleic acid (DNA) from pathogen
Sensitivity	High	Variable, depending on pathogen
Specificity	Variable, depending on test	High
Benefit	Useful for screening	Identify suspected pathogens and confirm active infection
Limitations	Clinical signs may precede a measurable antibody response	A negative PCR result does not necessarily rule out infection

Lyme is an exception: Clinical signs of *Borrelia burgdorferi* infection (Lyme disease) occur postseroconversion. Serology testing alone (SNAP 3Dx/4Dx or Lyme Quant C6) is the recommended diagnostic methodology. *B. burgdorferi* is rarely detected by PCR in the peripheral blood of infected animals.

Complimentary and can be used together...

The benefits of PCR and serology for sick patients

The amount of time between infection and the onset of clinical signs is typically unknown and will have an effect on diagnostic test results.

Using serology and PCR together improves your ability to make a complete and accurate diagnosis.

Conclusions

- Good, Better, Best: Don't Miss Infectious Disease
- The only way to not miss infectious disease
- Screen and test Broadly!!!

Diagnosing Leptospirosis

- Identifying the organism
 - Urine and blood cultures
 - Gold standard
 - Blood only first few days, negative if abs
 - Urine after 4-10 days, negative if abs
 - Furosemide increases yield (dilute urine)
 - Difficult to culture
 - Rarely offered
 - Blood PCR
 - Urine PCR

Diagnosis

Serology

- MAT Microscopic agglutination test
 - Standard serological test in companion animals
 - Serum mixed with serovar specific organisms
 - Highest dilution causing 50% agglutination of the organisms is reported as the titer
 - Highest titer the infecting serogroup???

New Lepto ELISA

- Single peptide
- Non-serovar specific
- Rapid turn-around
- Still picks up vaccinal abs
- As good/better than MAT
- Repeat if neg early on
- Combine with PCR?

Canine Influenza Virus

- Influenza A
 - Family Orthomyxoviridae
- Classified into subtypes
 - Hemagglutinin
 - 16 antigens (H1 to H16)
 - Neuraminidase
 - 9 antigens (N1 to N9)
 - Typically species specific

This digitally-colorized negative-stained transmission electron micrograph (TEM) depicts a number of influenza A virions. Source: CDC Public Health Image Library

Canine Influenza Virus Emergence Subtype H3N8

- Jumped directly from horses to dogs, discovered in 2004
 - Likely a one-time event
- Developed ability to spread from dog-to-dog

Center for Food Security and Public Health, Iowa State University, 2013

Canine Influenza Virus Emergence Subtype H3N2

- Avian origin virus
- Been in dogs in Asia since at least 2007

Center for Food Security and Public Health, Iowa State University, 2013

Emerging Disease Monitoring

Canine Influenza Virus, Testing Summary March 13 – May 6, 2015

CIV Testing and Results

California (5/0), Colorado (3/0), Connecticut (2/0), Florida (7/0), Georgia (11/0), Idaho (1/0), Illinois (166/238), Indiana (27/3), Iowa (1/1), Kansas (2/0), Louisiana (1/0), Maine (1/0), Maryland (6/0), Massachusetts (6/1), Michigan (4/0), Minnesota (2/0), Missouri (1/0), Montana (1/0), New Hampshire (1/0), New Jersey (3/0), New York (22/1), North Carolina (1/0), North Dakota (2/0), Ohio (8/0), Oklahoma (3/0), Pennsylvania (3/0), South Carolina (5/0), Texas (4/0), Virginia (2/0), Washington (3/0), West Virginia (1/0), Wisconsin (6/0), Wyoming (1/0), State Unknown (43/2)

¹Unconfirmed report in Idexx Press Release (5/7/15)

Source: Cornell University Animal Health Diagnostic Center. <u>https://ahdc.vet.cornell.edu/docs/CIV_Monitoring_2015_05_08.pdf</u>. Accessed 5/14/15

Emerging Disease Monitoring

Canine Influenza Virus, Testing Summary March 13 – May 6, 2015

Chicago Area Testing

Source: Cornell University Animal Health Diagnostic Center. <u>https://ahdc.vet.cornell.edu/docs/CIV_Monitoring_2015_05_08.pdf</u> Accessed 5/14/15

CIV Is Part of CIRD Complex

- Most commonly identified CIRD pathogens
 - Mycoplasma cynos
 - B. bronchiseptica
 - Canine parainfluenza virus (CPiV)
 - Canine respiratory coronavirus (CRCoV)
- Current Chicago outbreak
 - Canine influenza virus (CIV) New strain closely related to H₃N₂ Asian influenza A strains
 - Canine-specific influenza A H₃N8 PCR tests run by commercial veterinary labs might not detect this new strain
- Usually multiple agents act sequentially or synergistically to cause disease Datz, C. Compendium on Continuing Education for the Practicing Veterinarian. 2003; 25(12): 896 – 901 & 902-914.

CIRD Transmission

- Most outbreaks result from dog-to-dog contact
- Most common in high-stress, high-density environments
 - Pet shops, boarding and grooming facilities, commercial kennels, sporting events, daycare, animal shelters and veterinary hospitals
 - Oronasal contact with aerosolized respiratory secretions
 - Fomite spread also important, depending on the pathogen
 - Clinical signs usually develop 1–3 days post-exposure (up to 10 days)
 - Pathogen shedding varies with infectious agent
 - Viral agents commonly shed for 3-13 days post-infection
 - CIV Viral shedding ceases after ~7 days for H3N8 and potentially longer for H3N2

Datz, C. Compendium on Continuing Education for the Practicing Veterimarian. 2003; 25(12): 898 - 901 & 902-914. B. bronchiseptica and Ford, R.B. Kirks C Myc & plasman can be shedred by second 2 dogs to 1900 weeks to months Chalker, V.J. Clinical and Diagnostic Laboratory Immunology. 2003; 10(3): 352 - 356. Keil, D.J. JAVMA. 1998; 212(2): 200 - 207. Ford, R.B. In: Infectious Diseases of the Dog and Cat. 3rd Ed. 2006: 54-61.

Clinical Signs of CIRD

Rapid Clinical Course Means Clinical Diagnosis Most Common

Typical Presentation

- Paroxysmal coughing
- Elicitable tracheal cough
- Laryngitis Hoarse/high pitched 'honking'
- Rhinitis
- Retching, hacking cough, gagging
- Otherwise unremarkable physical examination
- Duration of clinical signs is typically 1–2 weeks

Severe Presentation

- More likely in puppies and unvaccinated dogs
- Signs of typical presentation plus
- Fever, lethargy, anorexia
- Dyspnea, clinical signs of lower respiratory tract infection
- Prolonged clinical course

From the Racetrack to the Backyard

CIV in the Pet Dog Population

Canine Influenza H3N8 Now Documented in 40 States

- Regular CIV activity in NE states, CO, Las Vegas, CA
- Morbidity rate can be 60–80%
- Single-agent infection mortality rate very low
- 80–90% cases Mild URT signs
- 10–20% cases Severe LRT signs, co-infections

WA MT ND MN OR ID SD WY MI IA NE OH NV IN DE UT CO KS MO CA KY NC TN OK AZ AR SC NM AL GA MS TX LA States with **CIV-infected Dogs**

Map Source: Syndromic surveillance data of Cynda Crawford, DVM, PhD, University of Florida; Edward Dubovi, PhD, Cornell University; Sanjay Kapil, DVM, PhD, ACVIM, Oklahoma State University; Rhode Island State Veterinarian's office; and IDEXX Laboratories. April 2013.

Map permission provided by Dr. C. Crawford, University of Florida. https://ahdc.vet.cornell.edu/news/civ.cfm . Accessed 2/17/15

CIV – H3N8 Peak Viral Shedding Precedes Onset of Clinical Signs

CIV H3N8 Has a Shorter Incubation Period Than Other Causes of CIRD

Dubovi, E.J. Vet Clin Nth America Small Anim. 2008; 38: 827-835.

American Veterinary Medical Association. https://www.avma.org/KB/Resources/Backgrounders/Pages/Canine-Influenza-Backgrounder.aspx . Accessed January 31, 2015.

Crawford, C. . http://www.sheltermedicine.com/node/32. Accessed March 31, 2015.

CIRD – Confirmation of Etiologic Agents

Upper Respiratory Signs

 Deep nasal/oropharyngeal swabs (nasal preferred)

Lower Respiratory Signs

Tracheal wash

Photo courtesy of Anderson, Diagnosing H3N8 CIV Infection. NAVC Clin Brief, October 2011.

CIRD Diagnostics – PCR

- Commercially available panels
 - Bordetella bronchiseptica, CAV₂, CDV, canine herpesvirus, canine influenza virus (H3N8, H3N2), CPiV, canine pneumovirus, CRCoV, H1N1 pandemic influenza virus, Mycoplasma cynos, Streptococcus equi subsp. zooepidemicus
- Nasal swabs twice as successful as nasopharyngeal swabs
- Don't use transport medium or wooden-stemmed swabs
- False negatives
 - Specimen taken after viral shedding, especially CIV
 - Poor sampling technique, sample quality and handling
- False positives
 - Shedding only occurs after vaccination with modified live vaccines up to 3 weeks
- Post vaccination CDV can be differentiated from natural disease using RT-PCR

Dubovi, E. et. al. *Vet Clinic Sm An Pract*. Canine Influenza.38 (2008) 827–835. **1–3 day turnaround**

CIRD Diagnostics – Serology & Culture

CIV – Hemagglutination Inhibition (HI) Testing for Anti-CIV Antibodies

- Paired antibody titer to demonstrate rising convalescent antibody titer 2–3 weeks later
- Vaccination can produce low antibody titer 1:16 1:64
- Active infection antibody titer 1:512 1:2048
- History important
 - Usually low seroprevalence and low vaccination rate in USA → Moderate antibody titer + appropriate history could be significant
 - Antibody titer starting to rise 10 days after infection
 - Prolonged elevated antibody titer after infection in rare cases

CIRD – Bacterial Culture and Sensitivity

- Bordetella, Mycoplasma, Streptococcus
- Also E. coli, Klebsiella, Pasteurella, Enterobacter
- Might yield multiple opportunistic isolates rather than primary pathogen

Larson L, et. al. Clin Vaccine Immunol. 2011 Apr; 18(4): 559–564.

CIV H3N8 – Peak Viral Shedding Precedes Onset of Clinical Signs

Dubovi, E.J. Vet Clin Nth America Small Anim. 2008; 38: 827-835.

American Veterinary Medical Association. https://www.avma.org/KB/Resources/Backgrounders/Pages/Canine-Influenza-Backgrounder.aspx . Accessed October 31, 2013.

Crawford, C. http://www.sheltermedicine.com/node/32. Accessed March 31, 2015.

CIV H3N2 – Shedding May Occur for Longer Duration

How Can We Prepare Outside of Chicago?

Education	 Know the travel history Avoid travel to endemic areas Quarantine dogs coming in from endemic areas
Vaccination!!!!	 Use H₃N8 and H₃N₂ Vaccinate for other components of CIRD
Be Diligent	 TISC – Test and Isolate All Suspected Cases

Lyme Prevention

- How does prevention work?
- Package
 - Tick removal
 - Tick control
 - <u>Vaccination</u>

Why Is That?

- Antigen shifting
- Outer surface antigens (Osps)
 - OspA
 - OspC
- Bacteria hiding

The A and C's of Outer Surface Protein Production

Other Lyme Vaccines

- Recombinant OspA or whole cell vaccine are really both providing OspA
 - Recombinant just OspA
 - Whole-cell (bacterin) OspA and other antigens (OspC)
- In most cases the immune system cannot clear the infection completely and cannot effectively prevent re-infection (dependent on Ab titers and antigens being displayed by the bacteria)
- Antibiotics help active disease but often do not clear the infection

Chimeritopes: A New Vaccine Direction

- <u>Chimeritope</u> a novel protein consisting of short, well defined, protective-linear epitopes derived from one or more proteins or protein variants from one or more pathogens
- <u>Advantages:</u>
 - Eliminate regions that are non-productive or elicit adverse events
 - Linear epitopes vs conformational epitopes
 - Protect against diverse pathogens
 - Synergistic mechanisms of protection

OspC Ab Response During Infection is Type-Specific

> 30 OspC types exist in nature but only a small subset cause invasive infections in canines

OspC-Chv2/OspA: Protective Efficacy in Canines

% of Sites with Lesions Consistent with LD

Control	- 55
OspC-Chv1	- 25
OspC-Chv2	- 17
OspA	- 19
OspC-Chv2/OspA	0%

OspC-Chv2 - minimal joint involvement

OspA – high joint involvement: 6/8 dogs

OspC-Chv2/OspA - prevented LD lesion formation, dissemination and seroconversion in all dogs

Treatment (Vaccine)	Lesion by location	# Dogs
Not vaccinated –infection control	Skin, 1 joint Skin, 4 joints Skin, 6 joints Skin, 7 joints Skin, 9 joints Skin, 10 joints	1 1 2 1 1 1
OspC-Chv1	Skin, 10 joints Skin only Skin, 3 joints Skin, 4 joints Skin, 6 joints 4 joints No lesions	1 2 1 1 1 1 1 2
OspC-Chv2	Skin only Skin, 1 joint Skin, 6 joints No lesions	5 1 1 1
OspC-Chv2 + OspA	No lesions	8
OspA alone	Skin, 2 joints Skin, 3 joints 1 joint 2 joints 3 joints 4 joints No lesions	1 1 1 1 1 1 2

Chimeritope Technology: Next Generation Vaccines

So up until now...

- Recombinant or whole cell vaccine are really both providing OspA
 - Recombinant just OspA
 - Whole-cell: Osp A and other antigens including Osp C Significance?

p41

OspC

- The dog's immune system cannot clear the infection completely in most cases. Likely to not be able to effectively prevent re-infection from a tick, dependent on titers and antigens being displayed by the bacteria.
- Antibiotics help active disease but often are unable to clear the organism.

But now with crLyme

- Still Osp A
- Chimeric Osp C
 - Promote Osp C antibodies that for the first tine will actually
 - Recognize the borrelia in the mid gut at the end of the blood meal
 - Recognize the borrelia in the dog!!!
 - The ones that escaped the Osp A barrier
 - Just like a real vaccine

What does that all mean?

- Although we still need the full package
 - Coinfection
 - Decrease chance of Lyme infection
- But No longer is this a numbers game!
- We are no longer at the mercy of the waning OspA titer and unknown numbers of ticks getting through the tick control barrier.
- We actually for the first time have a vaccine that will work in the dog!!!

Recommendations for Lyme Prevention

- Still use vaccines as part of a Lyme prevention package
- Test every Lyme positive dog for proteinuria and if pos then treat
- Vaccinate clinical dogs? No
- Vaccinate negative dogs Yes!
- Vaccinating positive dogs Yes! if risk of reinfection

Richard.goldstein@amcny.org

